Date nanoseconds field type
The date_nanos
field type is similar to the date
field type in that it holds a date. However, date
stores the date in millisecond resolution, while date_nanos
stores the date in nanosecond resolution. Dates are stored as long
values that correspond to nanoseconds since the epoch. Therefore, the range of supported dates is approximately 1970--2262.
Queries on date_nanos
fields are converted to range queries on the field value's long
representation. Then the stored fields and aggregation results are converted to a string using the format set on the field.
The date_nanos
field supports all formats and parameters that date
supports. You can use multiple formats separated by ||
.
For date_nanos
fields, you can use the strict_date_optional_time_nanos
format to preserve nanosecond resolution. If you don't specify the format when mapping a field as date_nanos
, the default format is strict_date_optional_time||epoch_millis
that lets you pass values in either strict_date_optional_time
or epoch_millis
format. The strict_date_optional_time
format supports dates in nanosecond resolution, but the epoch_millis
format supports dates in millisecond resolution only.
Example
Create a mapping with the date
field of type date_nanos
that has the strict_date_optional_time_nanos
format:
PUT testindex/_mapping
{
"properties": {
"date": {
"type": "date_nanos",
"format" : "strict_date_optional_time_nanos"
}
}
}
Index two documents into the index:
PUT testindex/_doc/1
{ "date": "2022-06-15T10:12:52.382719622Z" }
PUT testindex/_doc/2
{ "date": "2022-06-15T10:12:52.382719624Z" }
You can use a range query to search for a date range:
GET testindex/_search
{
"query": {
"range": {
"date": {
"gte": "2022-06-15T10:12:52.382719621Z",
"lte": "2022-06-15T10:12:52.382719623Z"
}
}
}
}
The response contains the document whose date is in the specified range:
{
"took": 43,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": "testindex",
"_id": "1",
"_score": 1,
"_source": {
"date": "2022-06-15T10:12:52.382719622Z"
}
}
]
}
}
When querying documents with date_nanos
fields, you can use fields
or docvalue_fields
:
GET testindex/_search
{
"fields": ["date"]
}
GET testindex/_search
{
"docvalue_fields" : [
{
"field" : "date"
}
]
}
The response to either of the preceding queries contains both indexed documents:
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": "testindex",
"_id": "1",
"_score": 1,
"_source": {
"date": "2022-06-15T10:12:52.382719622Z"
},
"fields": {
"date": [
"2022-06-15T10:12:52.382719622Z"
]
}
},
{
"_index": "testindex",
"_id": "2",
"_score": 1,
"_source": {
"date": "2022-06-15T10:12:52.382719624Z"
},
"fields": {
"date": [
"2022-06-15T10:12:52.382719624Z"
]
}
}
]
}
}
You can sort on a date_nanos
field as follows:
GET testindex/_search
{
"sort": {
"date": "asc"
}
}
The response contains the sorted documents:
{
"took": 5,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": null,
"hits": [
{
"_index": "testindex",
"_id": "1",
"_score": null,
"_source": {
"date": "2022-06-15T10:12:52.382719622Z"
},
"sort": [
1655287972382719700
]
},
{
"_index": "testindex",
"_id": "2",
"_score": null,
"_source": {
"date": "2022-06-15T10:12:52.382719624Z"
},
"sort": [
1655287972382719700
]
}
]
}
}
You can also use a Painless script to access the nanoseconds part of the field:
GET testindex/_search
{
"script_fields" : {
"my_field" : {
"script" : {
"lang" : "painless",
"source" : "doc['date'].value.nano"
}
}
}
}
The response contains only the nanosecond parts of the fields:
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": "testindex",
"_id": "1",
"_score": 1,
"fields": {
"my_field": [
382719622
]
}
},
{
"_index": "testindex",
"_id": "2",
"_score": 1,
"fields": {
"my_field": [
382719624
]
}
}
]
}
}